# **PRIVACY-PRESERVING VERIFICATION OF CLINICAL RESEARCH**

Eleftheria Makri, Maarten H. Everts, Sebastiaan de Hoogh, Andreas Peter, Harm op den Akker, Pieter H. Hartel, Willem Jonker

## **RESEARCH QUESTION**

How to prevent *human error* and *fraud* from threatening the integrity of (statistical) clinical research results, while preserving patient privacy?





#### CONTRIBUTION

Enhance Privacy Awareness in the Verification of Clinical Research Enable Automated, **Privacy-Preserving** Verification of Clinical **Research Results** Demonstrate the Practicality of our Approach with Real **Patient Data** 



## **PRIVACY-**PRESERVING **STATISTICS** VERIFICATION

- Mean
- Variance
- Student's *t*-test
- Welch's *t*-test
- ANOVA (F-test)
- Linear Regression
- Pearson's  $\chi^2$ -test

### **SECURE MULTI-PARTY COMPUTATION<sup>1</sup> FROM SHAMIR'S SECRET SHARING<sup>2</sup>**

| Nedication X | Nedication Y |                                                               |
|--------------|--------------|---------------------------------------------------------------|
| 90           | 80           |                                                               |
| 120          | 110          |                                                               |
| 80           | 70           |                                                               |
| 110          | 100          |                                                               |
|              |              |                                                               |
|              |              |                                                               |
|              |              |                                                               |
|              |              |                                                               |
| Q            | EFFICIE      | ICY                                                           |
|              |              | Medication X Medication Y   90 80   120 110   80 70   110 100 |

Non-private information available in the clear

### PERFORMANCE

Practicality demonstrated by experiments on *real* 



McNemar's test

#### **References:**

[1] Yao, Andrew C. "Protocols for secure computations." *Proceedings of the 23rd Annual* Symposium on Foundations of Computer Science. 1982. [2] Shamir, Adi. "How to share a secret." *Comm. of the ACM* 22(11):59-98, 1979.

#### patient data:

Fastest: 43.5 ms (mean age of 84 patients) **Slowest:** 884.6 ms (regression on 6828) messages)

# UNIVERSITY OF TWENTE.

