KU LEUVEN

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru, Titouan Tanguy

> Eleftheria Makri for the Ei/Ψ seminar TU Einhoven, 27 May, 2021

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

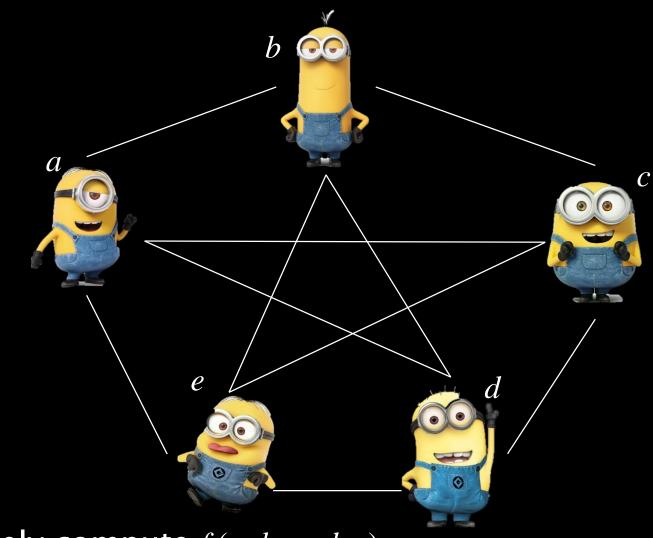
RSA Modulus

 A biprime (i.e., product of 2 primes), usually denoted by N, with secret prime factors, usually denoted by p and q.

 The heart of the first public key cryptosystem, where security is based on the factoring assumption.

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

Multiparty Computation



→ Securely compute f(a, b, c, d, e).

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

(Distributed) Sieving*

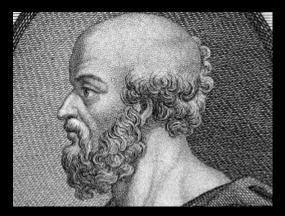
- *p* and *q* are secret, making efficient trial division cumbersome.
- We set *M*_{Sample} to be the product of all odd (small) primes up to a certain sieving bound.
- Each party selects their share s.t. it is relatively prime to M_{Sample} , meaning that their product is also relatively prime to M_{Sample} .

→Hence, the product of the multiplicative shares has no small prime factors.

The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving

The

of



RSA Modulus: Applications

- Threshold Cryptography
- Permissionless Consensus in Blockchain
- Verifiable Delay Functions
- Interesting beyond academia: (e.g., Unbound, the VDF Alliance, the Ethereum Foundation, Ligero)

Related Work

Protocol	Security	Dishonest Majority	#Parties	Test	No Leakage
[BF97]	Passive	×	<i>n</i> ≥ 3	biprimality	\checkmark
[FMY98]	Active	×	<i>n</i> ≥ 3	biprimality	\checkmark
[PS98]	Active	\checkmark	<i>n</i> = 2	biprimality	×
[Gil99]	Passive	\checkmark	<i>n</i> = 2	biprimality	\checkmark
[ACS02]	Passive	×	<i>n</i> ≥ 3	primality	\checkmark
[DM10]	Active	×	<i>n</i> = 3	primality	\checkmark
[HMRT12 <i>,</i> HMR+19]	Active	\checkmark	<i>n</i> ≥ 2	biprimality	\checkmark
[FLOP18]	Active	\checkmark	<i>n</i> = 2	biprimality	×
[CCD+20]	Active	\checkmark	<i>n</i> ≥ 2	biprimality	\checkmark
[CHI+20]	Active*	\checkmark	<i>n</i> ≥ 2	biprimality	\checkmark
Ours	Active	\checkmark	<i>n</i> ≥ 2	biprimality	\checkmark

*Diogenes works in the semi-honest coordinator model, and active security is only guaranteed for the non-coordinating parties.

Contribution

- RSA modulus generation protocol working for generic MPC.
- Constructive sampling of candidate primes, by transforming multiplicative sharings to additive, via semi-honest multiplication.
- Jacobi test based biprimality, where the consistency check happens only on shares that pass the test.
- Protocol for converting additive shares over a ring to additive shares over the integers, of independent interest.
- Improved communication cost over the state-of-the-art.

The Boneh-Franklin Blueprint

1. Pick prime candidates (via trial division)

2. Securely multiply candidates

3. Biprimality testing

Our Protocol

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute *N* = *p q* and reveal *N*
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

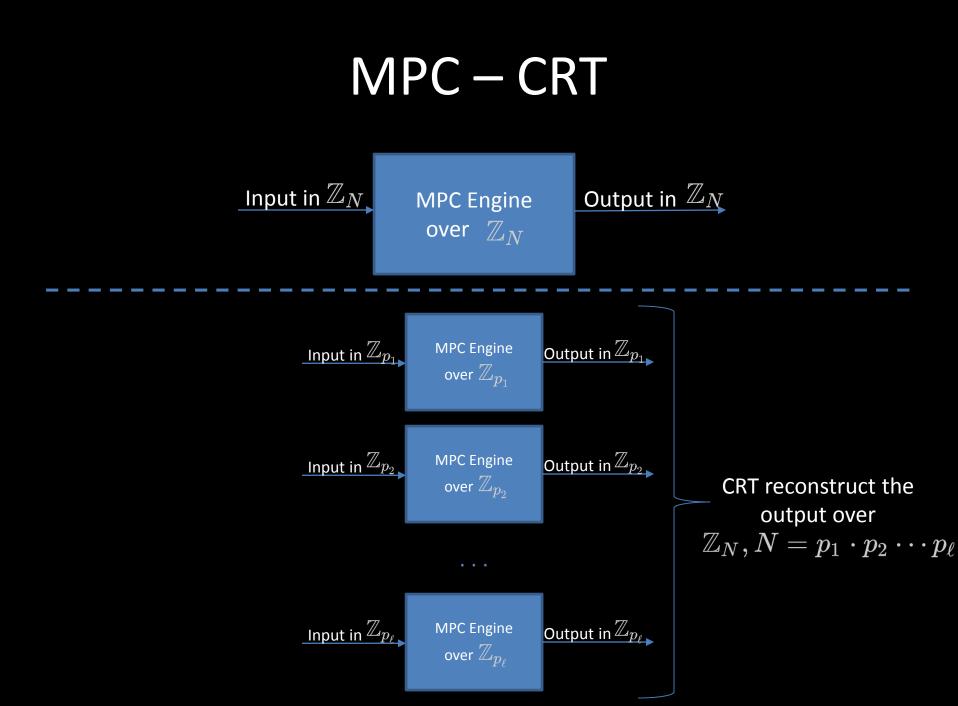
Our Protocol

1. Sample candidate primes *p* and *q*

- 2. Securely compute N = p q and reveal N
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

Sampling

- Distributed sieving, sampling multiplicative shares without small prime factors
- Semi-honest multiplication on the shares, allowing additive errors
- Transform to additive shares, while ensuring they fall within bounds that determine the bitlength of the primes
- Input into MPC-CRT engines



Our Protocol

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute *N* = *p q* and reveal *N*
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

Combine

- Extend the CRT representation, so that the product is taken over the integers (i.e., prevent overflow)
- Perform "standard" secure multiplication over the MPC-CRT engines
- Reveal and CRT-Reconstruct the product N
- Check that *N* falls within the predetermined bounds, and it is coprime to *M*_{Sample}

Our Protocol

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute N = p q and reveal N
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

Jacobi Test

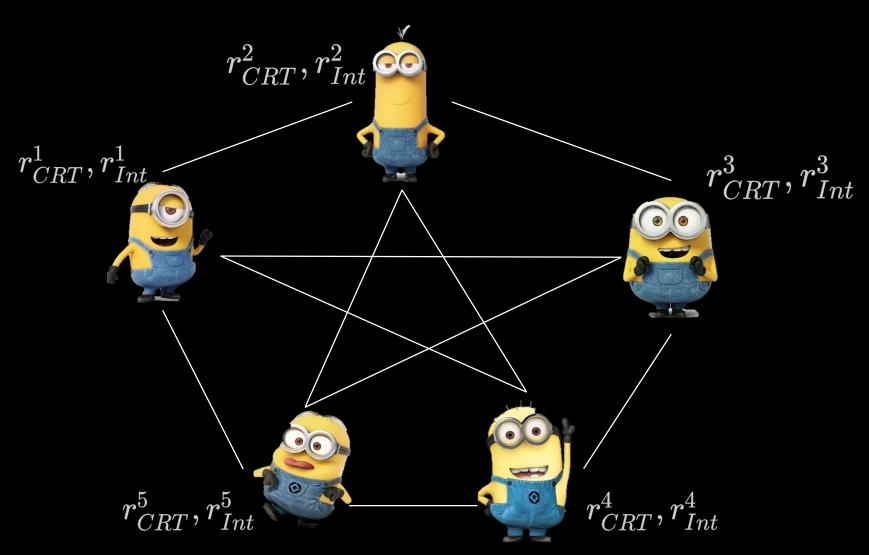
- Sample public $\gamma \in \mathbb{Z}_N$ s.t. the Jacobi symbol $(rac{\gamma}{N}) = 1$
- Securely compute $\phi(N)/4$ in the exponent of γ
- Abort if $\,\gamma^{\phi(N)/4}
 eq \pm 1$
- This test accepts false positives with probability $\frac{1}{2}$. We repeat the test sec times to increase the probability of N being a biprime to $2^{-\rm sec}$

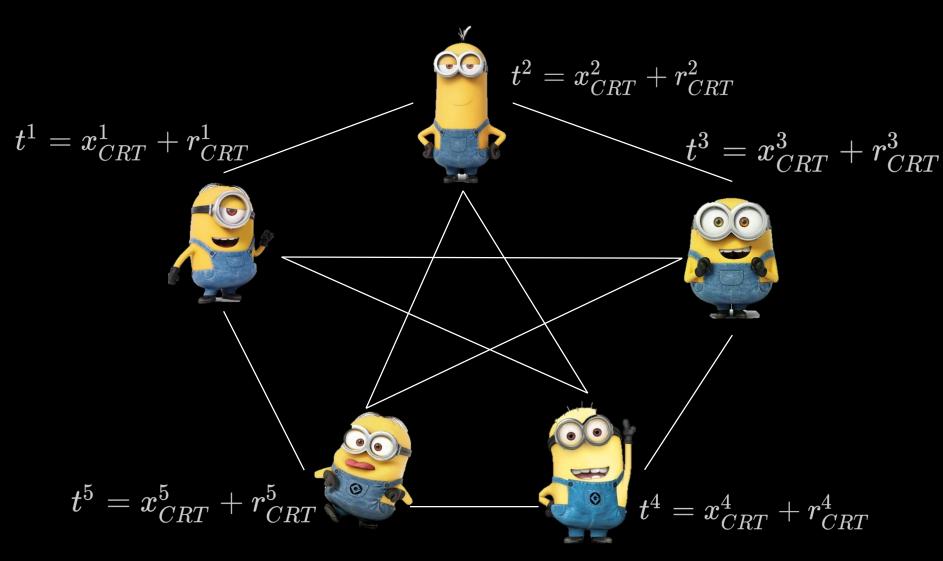
Our Protocol

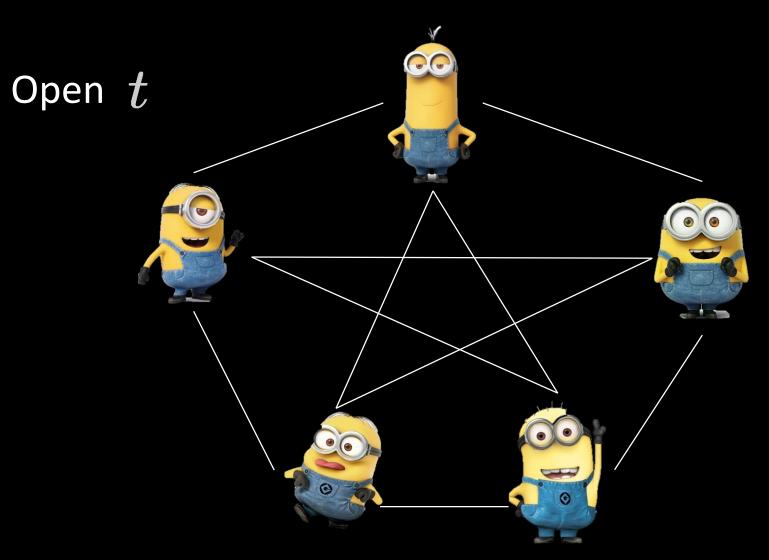
- 1. Sample candidate primes *p* and *q*
- 2. Securely compute *N* = *p q* and reveal *N*
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

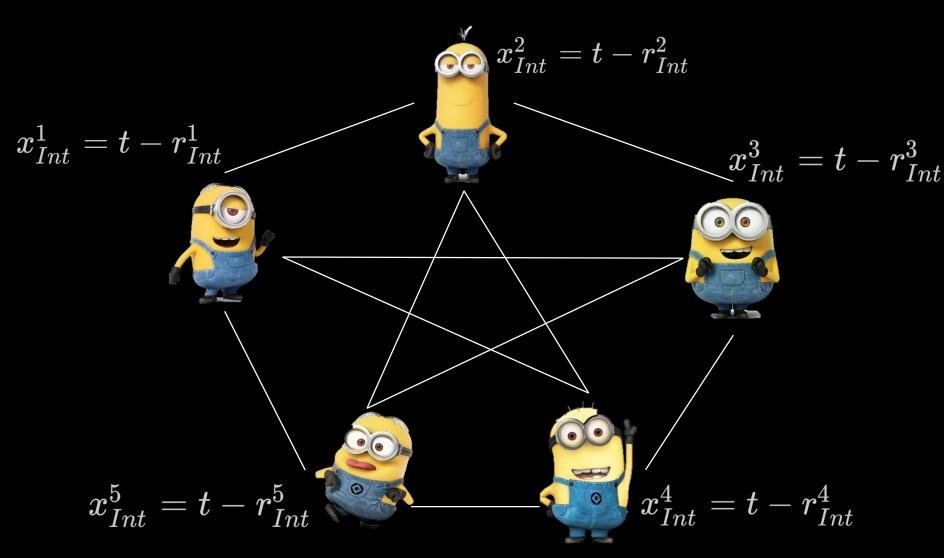
Consistency Check

- This check ensures security against malicious parties, who contributed inconsistent shares to the Jacobi test.
- 1. LevelUp s.t. the CRT representation allows the consistency check computations to be performed without overflow.
- 2. Sample bounded randomness and multiplicatively mask the secret exponent
- 3. Convert the CRT represented masked sharing to a sharing over the integers









Our Protocol

- 1. Sample candidate primes *p* and *q*
- 2. Securely compute *N* = *p q* and reveal *N*
- 3. Jacobi biprimality test
- 4. Consistency check
- 5. GCD test

Efficiency Analysis (1/2)

Scheme	CCD+20	Ours	CCD+20	Ours	CCD+20	Ours
К	1024	1024	1536	1536	2048	2048
semi-honest (MB)	139	41.68	416	116.55	910	243.3
malicious (GB)	20.81	0.64	43.42	1.188	74.52	1.99

Communication cost per party, for 2-party protocol.

Efficiency Analysis (2/2)

Scheme	CCD+20	Ours	CCD+20	Ours	CCD+20	Ours
К	1024	1024	1536	1536	2048	2048
semi-honest (MB)	2.09	4.34	6.24	12.17	13.65	25.23
malicious (GB)	1020	68.8	4734	153.2	8100	281.91

Communication cost per party, for 16-party protocol.

Summary of Contributions

- RSA modulus generation protocol working with generic MPC.
- Fully exploit Distributed Sieving techniques, and public knowledge to perform it semi-honestly without degrading the overall security.
- Convert to Integer protocol, of independent interest.
- Up to 37x better communication cost compared to CCD+20.