A Gentle Introduction to Secure Computation

Eleftheria Makri | lunch talk – Digital Security group, Radboud University

19/01/2024

Bij ons leer je de wereld kennen

Privacy Enhancing Technologies

The Three States of Data

Data in Transit

Data in Use

The Three States of Data

Traditional Cryptography

The Three States of Data

Traditional Cryptography

Secure Computation Technologies

Data in Use

Medical Research

Data in Use

"How to allow the collection and purposeful processing of private data, without compromising individual privacy?"

Securing Data in Use – PETs

3+

Differential Privacy

Data Anonymization

Data in Use

Determine the function sensitivity

DP - The Penalties

 Inherent information leakage, called privacy budget in DP terms.

Inherent tradeoff between data privacy and data utility

Securing Data in Use – PETs

3+

Differential Privacy

Data Anonymization

Data in Use

Data in Use

Homomorphic Encryption

Types of Homomorphic Encryption

НЕ Туре	Type of Operation	Number of Operations
Partially Homomorphic Encryption (PHE)	One (Addition OR Multiplication)	Unlimited
Somewhat Homomorphic Encryption (SHE)	Two (Addition AND Multiplication)	Limited
Fully Homomorphic Encryption (FHE)	Two (Addition AND Multiplication)	Unlimited

Homomorphic Encryption Context

- Outsourcing the computation to **one single party** (server)
- Inherently *trust* the server to perform the computation correctly and honestly
- **One round** of communication: Query Response
- **Communication and computational cost** is considerably larger than plaintext computations

Multiparty Computation – MPC

→ Securely compute f(a, b, c, d, e).

"Two millionaires wish to know who is richer; however, they do not want to find out inadvertently any additional information about each other's wealth. How can they carry out such a conversation?"

-Andrew Yao, 1982

Multiparty Computation Context

- A *minimum of two parties* (servers) is required to perform computation
- *Trust* is distributed and there are various security models one can consider
- *Multiple rounds* of communication required in an interactive protocol
- Communication and computational cost is considerably larger than plaintext computations (yet more efficient than HE solutions!)

Security Models

• Active Security

VS.

Passive Security

Corruption Thresholds

• Dishonest Majority

VS.

Honest Majority

Corruption Thresholds

• Dishonest Majority

VS.

in the active model

OR

in the passive model

Honest Majority

Types of Parties

Types of Parties

Computational Power of Parties

Available Network Setting/Resources

Available Network Setting/Resources

Secret Sharing Based MPC (e.g., additive)

Available Network Setting/Resources

Garbling Based (MPC)

Available Network Setting/Resources

LAN

The Preprocessing Model

Offline Phase

- Data independent
- Any time prior to protocol execution
- Prepare (random) material for input sharing and multiplication computations

Online Phase

- Data dependent
- Synchronous protocol execution with all parties online
- Consume preprocessed material to (more efficiently) complete the computation at hand

Share Input *x* (online phase)

Compute Product $z = x \cdot y$ (online phase) 1/3

Compute Product $z = x \cdot y$ (online phase) 2/3

Set $[z] = [c] + \varepsilon \cdot [b] + \rho \cdot [a] + \varepsilon \cdot \rho$

The tradeoffs

Functionality

MPC Applications

- Auctions
- e-Voting
- Statistical Analysis and Collaborative Analytics
- Fraud Detection
- e-Health and general medical research applications
- Key Management
- Machine Learning

According to Gartner, by 2025, 50% of large organizations will implement privacyenhancing computation to process data in untrusted environments and multiparty data analytics use cases.

Questions and Discussion