# Secure and Efficient Computing on Private Data

Eleftheria Makri | *for the CWI Student Seminar* 

14/04/2023



Bij ons leer je de wereld kennen

## Media Player Classic – MPC



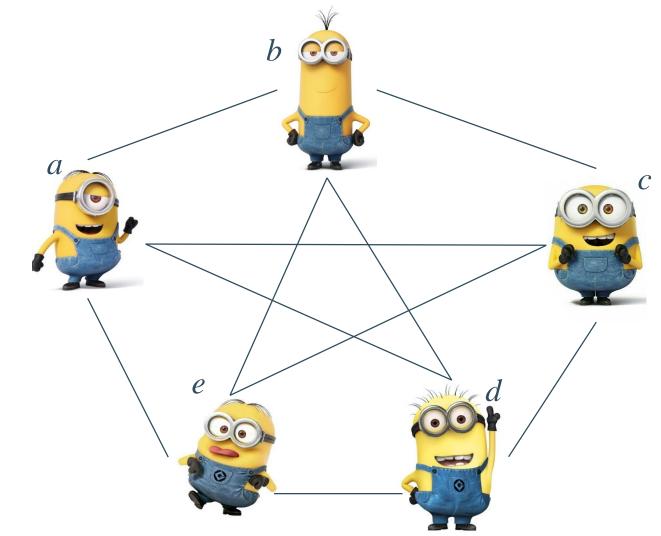
## An Information-Driven Society





"How to allow the collection and purposeful processing of private data, without compromising individual privacy?"

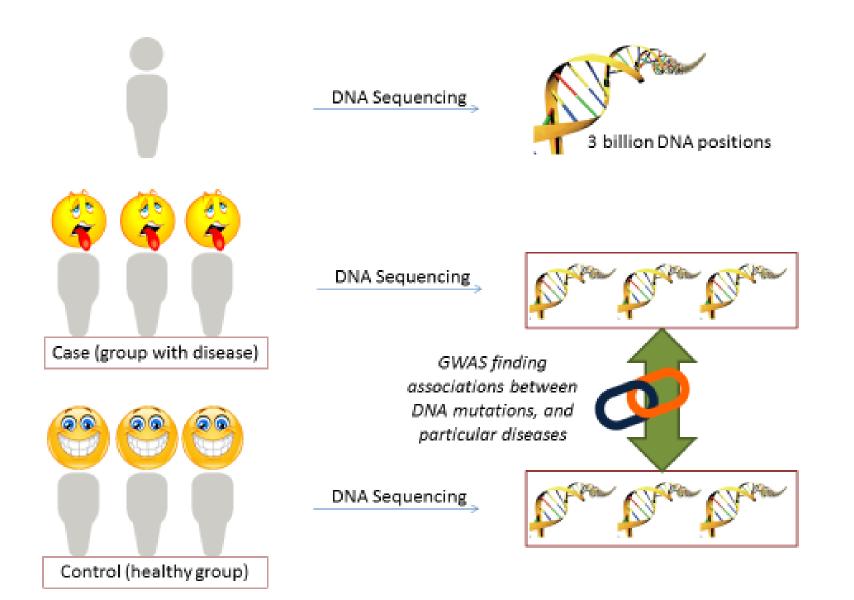
## Multiparty Computation – MPC



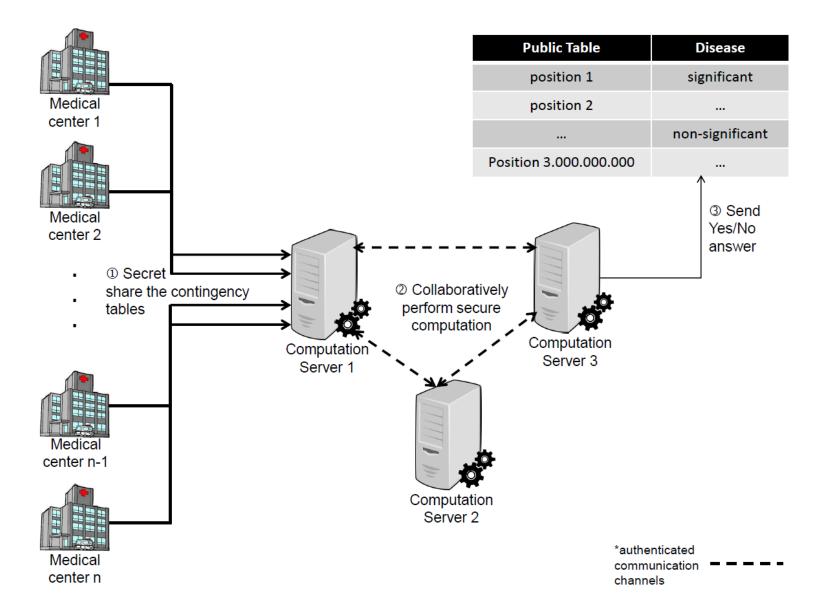
→ Securely compute f(a, b, c, d, e).

Application Scenario 1: Privacy-Preserving Genome-Wide Association Studies

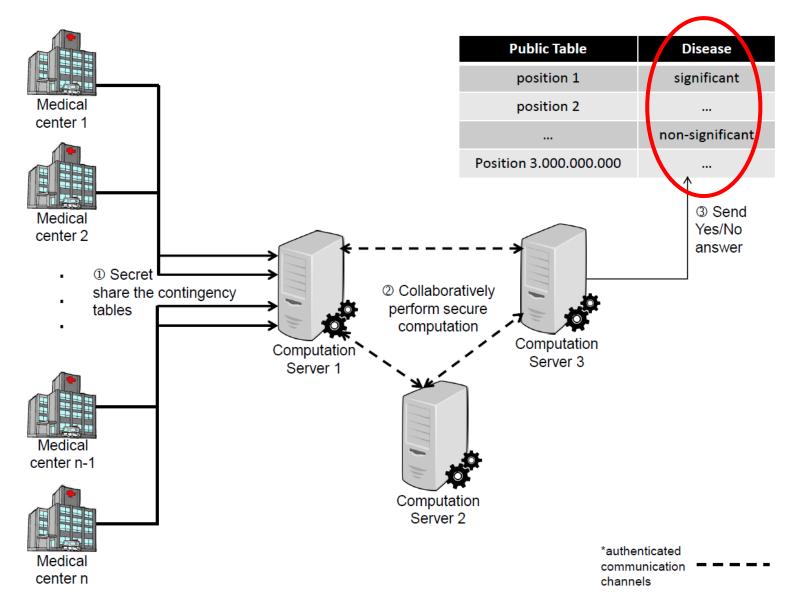
## **Privacy-Preserving GWAS**



## **MPC-based Solution**



## **MPC-based Solution**



## Problem of re-identification



## Problem of re-identification



## **MPC-based GWAS: Performance**

| Medical<br>Centers | Number of<br>Patients | CPU Time<br>(Server 1) | Data Sent<br>(Server 1) | CPU Time<br>(Server 2, and<br>Server 3) |
|--------------------|-----------------------|------------------------|-------------------------|-----------------------------------------|
| 20                 | 200000                | 2.2ms                  | 12.7KB                  | 1.9ms                                   |
| 40                 | 400000                | 2.3ms                  | 17.8KB                  | 2.0ms                                   |
| 60                 | 600000                | 2.3ms                  | 23KB                    | 2.0ms                                   |
| 80                 | 800000                | 2.5ms                  | 28.1KB                  | 2.2ms                                   |
| 100                | 1000000               | 2.4ms                  | 33.2KB                  | 2.1ms                                   |

## MPC-based GWAS vs. HE-based GWAS

- CPU time in the range of milliseconds
- Total communication cost in the range of KB
- Multiple parties (≥ 2) required to perform the computation

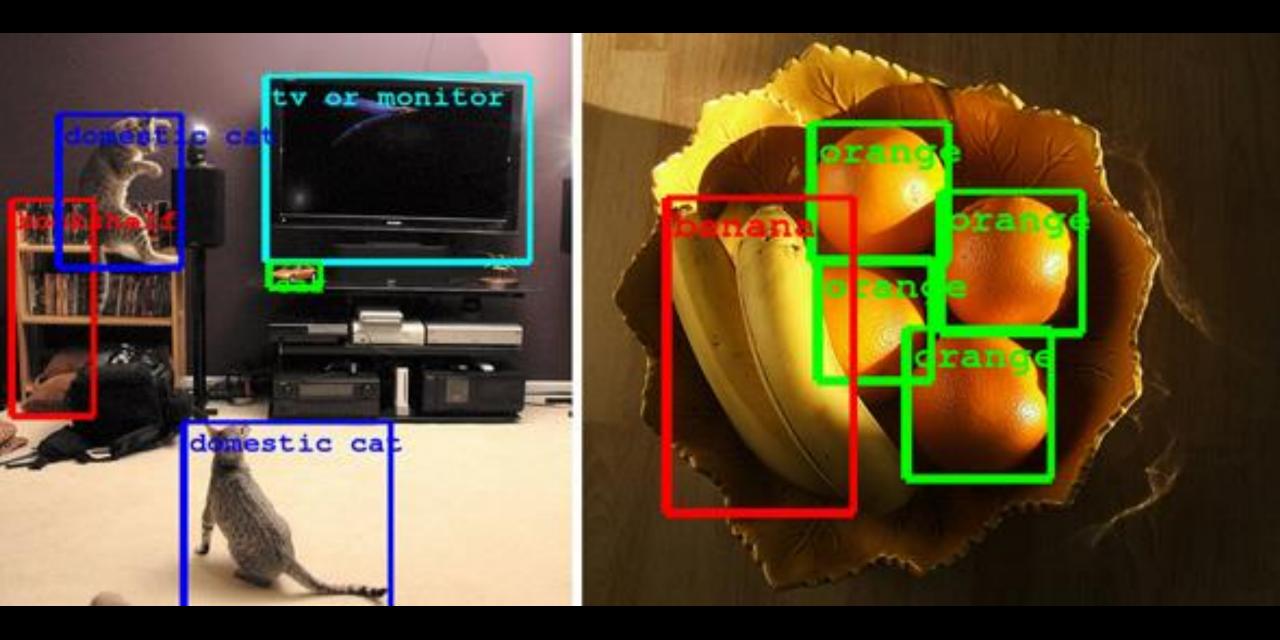
• CPU time in the range of seconds

- Total communication cost in the range of MB
- One party performs the computation

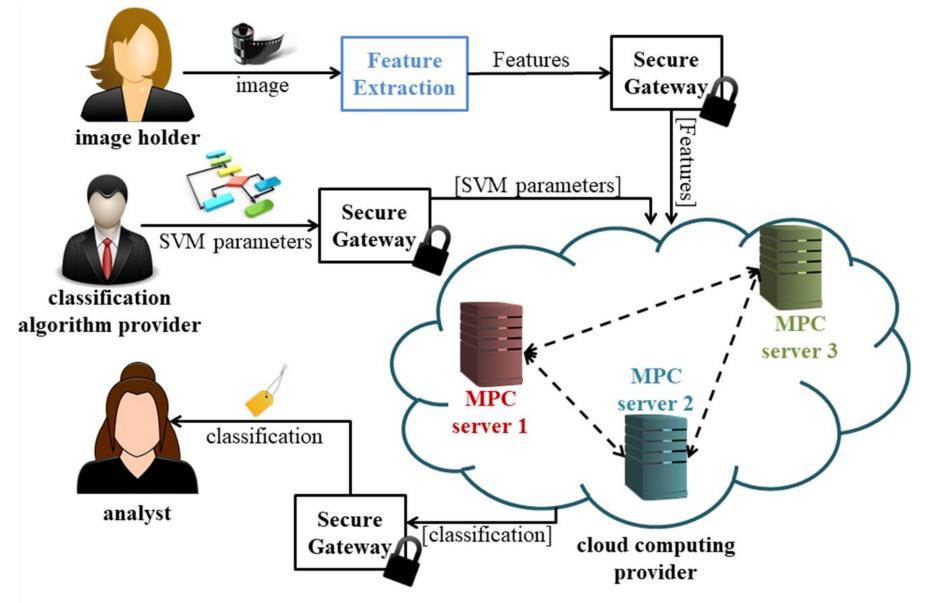
Active Security Guarantees

Semi-honest Decryptor assumption

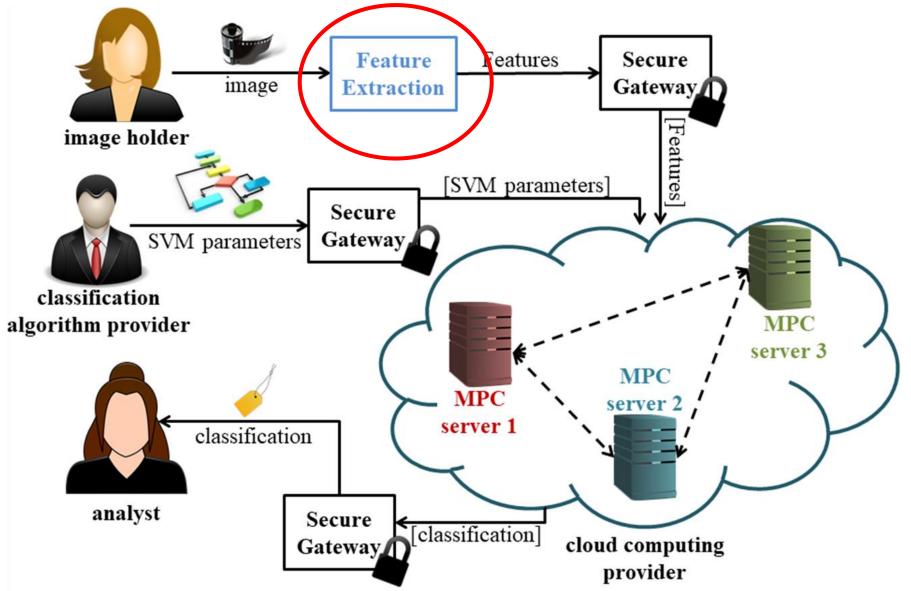
Application Scenario 2: Private Image Classification



## **EPIC: Efficient Private Image Classification**



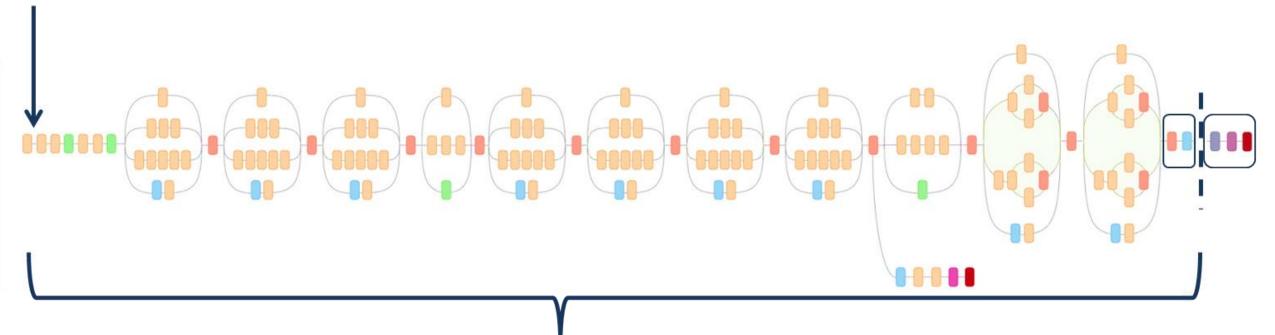
## **EPIC: Efficient Private Image Classification**



## Transfer Learning Feature Extraction (or: Learning from the Masters)



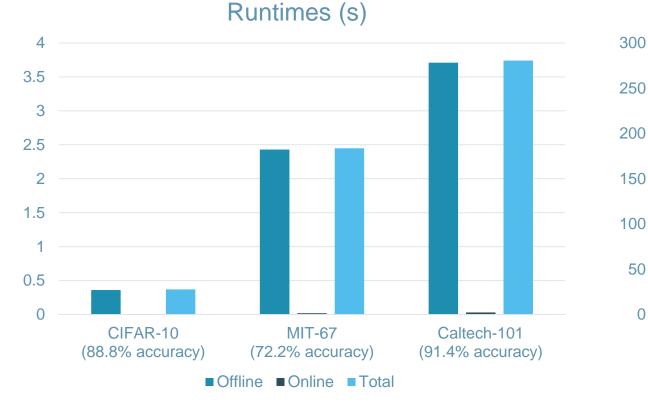
Plaintext (non-sensitive) images



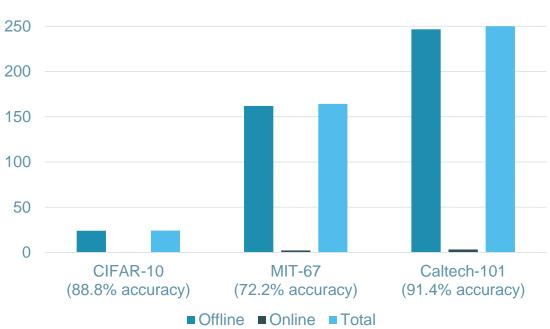
## **EPIC** Performance – Simple Variant

### **Computation Cost**

### **Communication Cost**

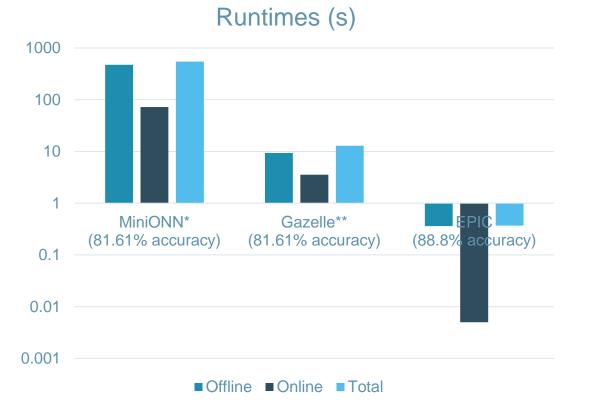


#### Communication (MB)

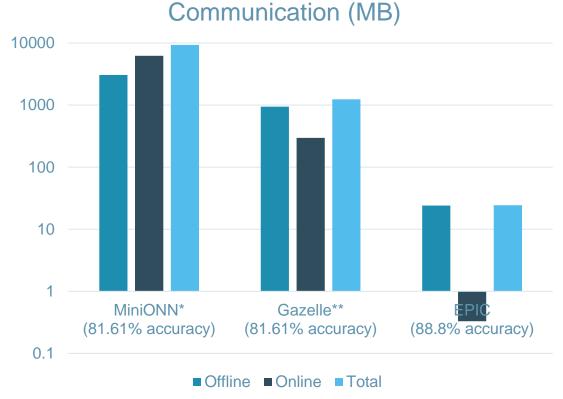


## Performance of the state-of-the-art private image classification

Computation Cost



**Communication Cost** 



\* Jian Liu, Mika Juuti, Yao Lu, N. Asokan. Oblivious Neural Network Predictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 619-631). ACM. \*\* Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX Security '18), Baltimore, MD, 2018. USENIX Association. Application Scenario 3: Secure RSA Modulus Generation

## **RSA Modulus**

• A biprime *N*, with two secret prime factors, *p* and *q*.

• Heart of the first public key cryptosystem; security based on factoring hardness assumption.

## Why RSA Moduli?

- Signatures and Encryption
  - [RSA-77], [Paillier-99].
- Cryptographic accumulators
  - [Benaloh-deMare-93], [Camenisch-Lysyanskaya-02], [Li-Li-Xue-07], [Boneh-Bünz-Fisch-19],
- VDF and Timelock puzzles
  - [Rivest-Shamir-Wagner-99], Boneh-Bonneau-Bünz-Fisch-18], [Wesolowski-19], [Pietrzak-19], [Ephraim-Freitag-Komargodski-Pass-19].
- Efficient zk-SNARKs
  - [Bünz-Fisch-Szepieniec-19], [Lai-Malavolta-19]
- And others...

## Why distributed RSA Moduli?

### • Threshold Cryptography

Call 2021a for Feedback on Criteria for Threshold Schemes

NIST Multi-party Threshold Cryptography

2021-July-02: https://csrc.nist.gov/projects/threshold-cryptography

Please send comments to threshold-MP-call-2021a@nist.gov by September 13, 2021.

1. Scope of proposals. The future call for proposals will be intended to gather expert submissions of concrete threshold schemes for primitives that are *interchangeable* (in the sense of IR 8214A, Section 2.4) with<sup>2</sup> ECDSA, EdDSA, RSA signing/decryption, RSA keygen, AES, and ECC-based key agreement.<sup>3</sup> After an evaluation period, and possibly various stages for tweaks,

## Why distributed RSA Moduli?

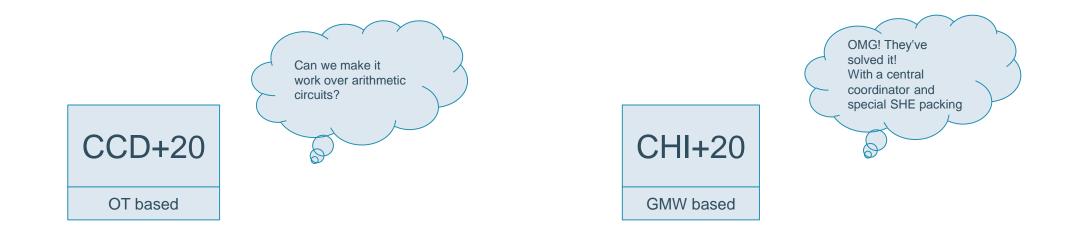
• Companies or foundations



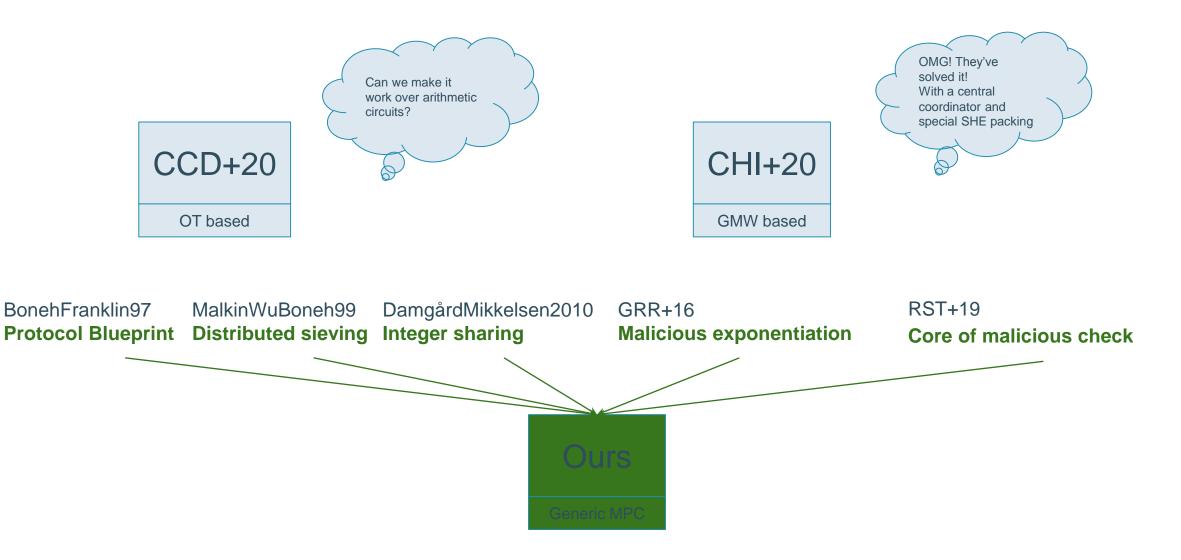


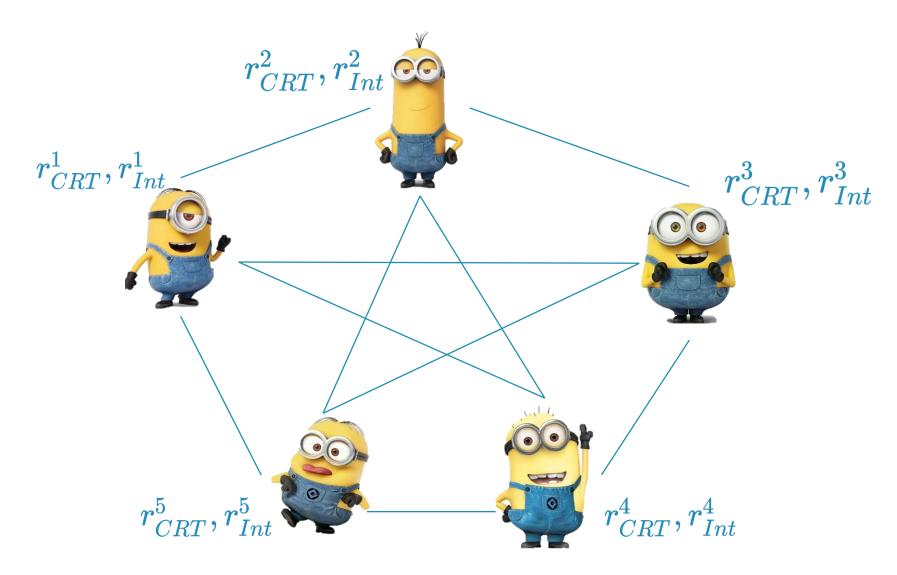


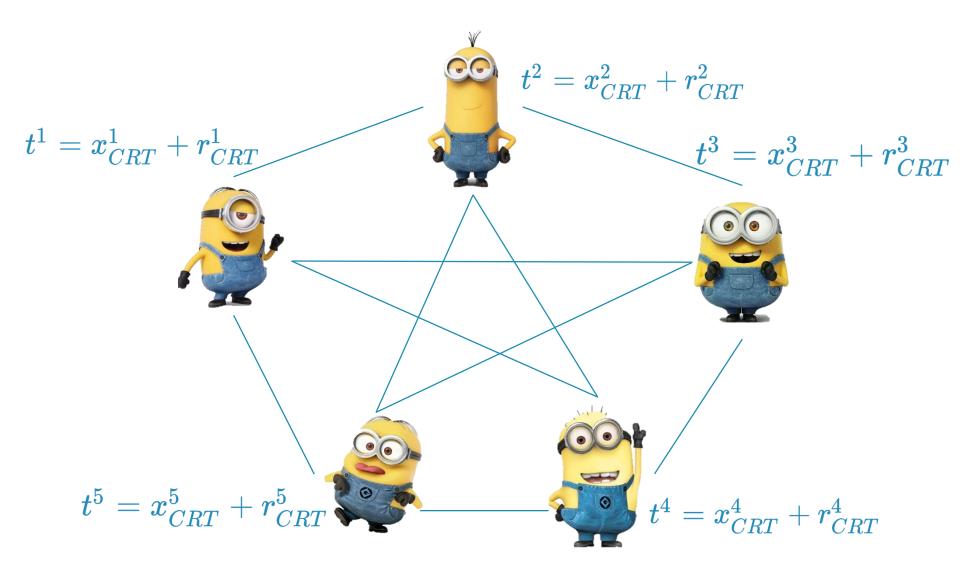
## Connections with related work

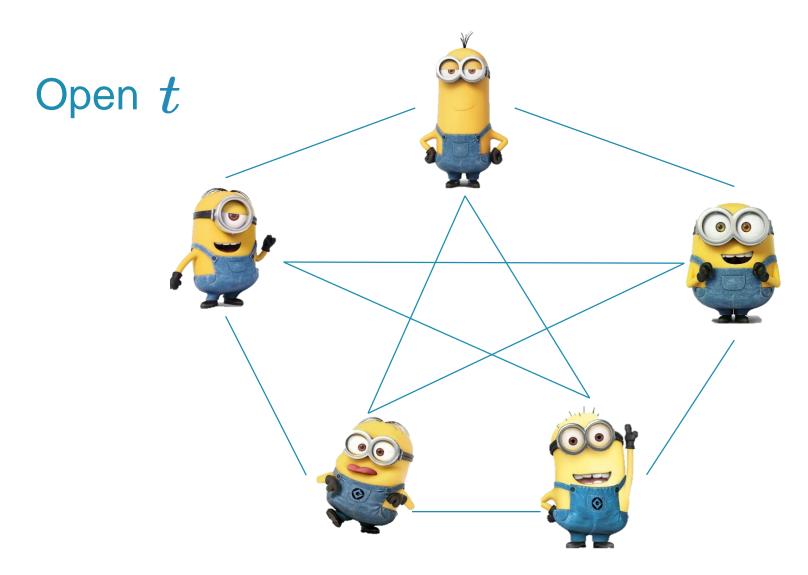


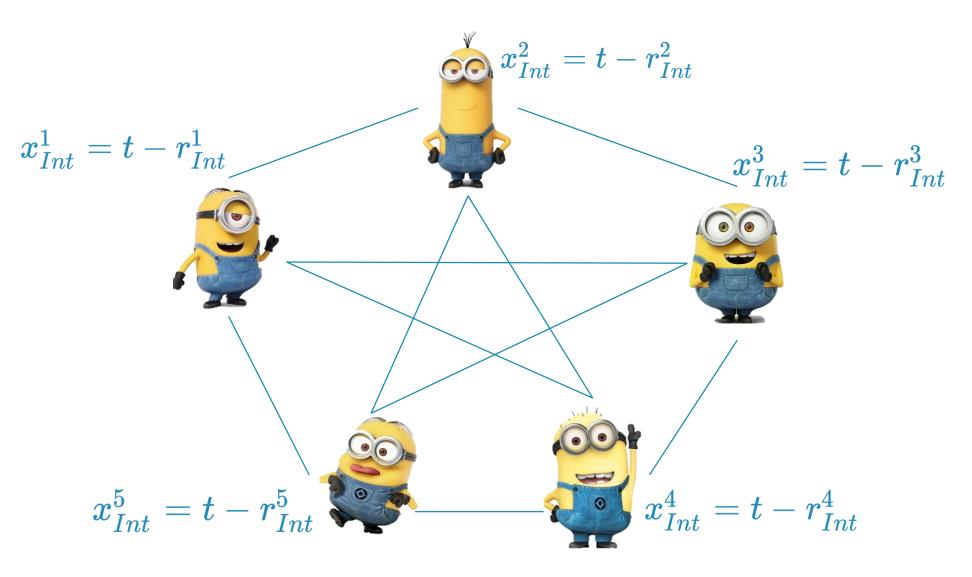
## Connections with related work









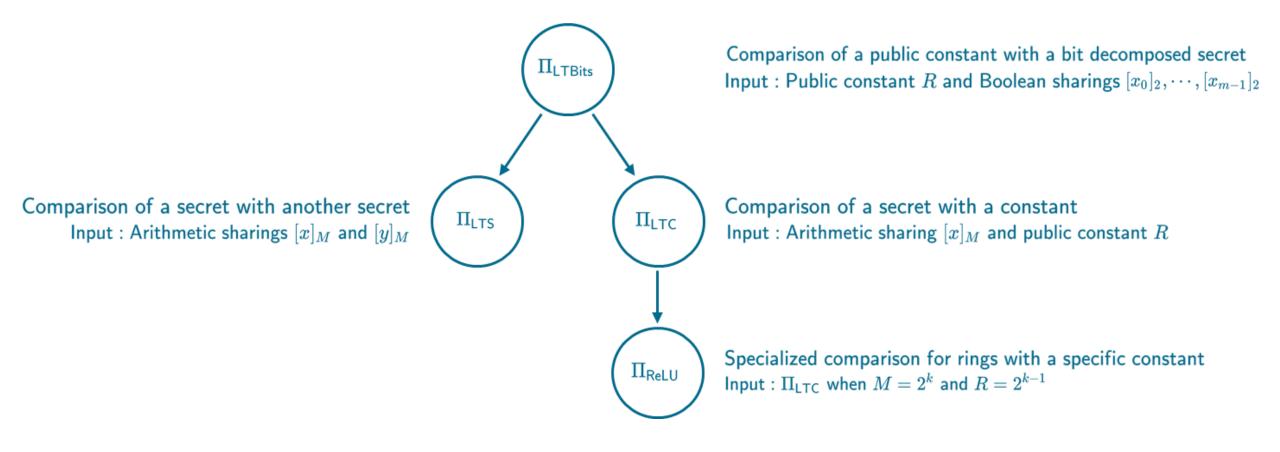


### Contributions in Secure RSA modulus Generation

- RSA modulus generation protocol with generic MPC.
- Exploit *Distributed Sieving techniques* and *public knowledge* to perform parts of the protocol semi-honestly without degrading security.
- Convert to Integer protocol, of independent interest.
- Up to 37x better communication cost compared to CCD+20.

Improving MPC Primitives: The Case of Comparisons

## **Rabbit: Comparison Protocols Collection**



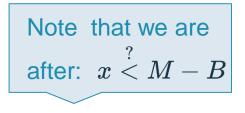
## Rabbit Intuition: Observation 1

**GOAL:** Detect when a sum over a particular modulus wraps around and correct for it.

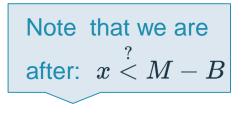
• Given a function: 
$$\mathsf{LT}(\cdot, \cdot) : \mathbb{Z} \times \mathbb{Z} \to \{0, 1\} \subseteq \mathbb{Z} : \begin{cases} \mathsf{LT}(x, y) = 1 & \text{if } (x < y); \\ \mathsf{LT}(x, y) = 0 & \text{otherwise}, \end{cases}$$

• We can compute a modular sum by performing computations over the integers:

 $x + y \mod M = x + y - M \cdot \mathsf{LT}(x + y \mod M, x) = x + y - M \cdot \mathsf{LT}(x + y \mod M, y)$ 

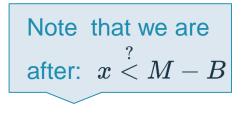


• Exploit the commutativity of addition:



• Exploit the commutativity of addition:

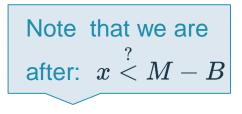
Combine with Observation 1 (performing modular sums over the integers):



• Exploit the commutativity of addition:

• Combine with Observation 1 (performing modular sums over the integers):

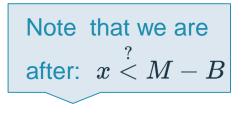
 $b = [a + B] = a + B - M \cdot \mathsf{LT}(b, B)$ =  $x + r - M \cdot \mathsf{LT}(a, r) + B - M \cdot \mathsf{LT}(b, B)$ 



• Exploit the commutativity of addition:

• Combine with Observation 1 (performing modular sums over the integers):

$$egin{array}{ll} b = [a+B] = a+B-M\cdot\mathsf{LT}(b,B) & b = [c+r] = c+r-M\cdot\mathsf{LT}(b,r) \ = x+r-M\cdot\mathsf{LT}(a,r)+B-M\cdot\mathsf{LT}(b,B) & = x+B-M\cdot\mathsf{LT}(c,B)+r-M\cdot\mathsf{LT}(b,r) \end{array}$$

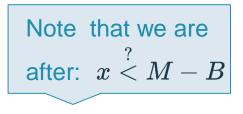


• Exploit the commutativity of addition:

Combine with Observation 1 (performing modular sums over the integers):

$$egin{aligned} b &= [a+B] = a + B - M \cdot \mathsf{LT}(b,B) & b &= [c+r] = c + r - M \cdot \mathsf{LT}(b,r) \ &= x + r - M \cdot \mathsf{LT}(a,r) + B - M \cdot \mathsf{LT}(b,B) & = x + B - M \cdot \mathsf{LT}(c,B) + r - M \cdot \mathsf{LT}(b,r) \end{aligned}$$

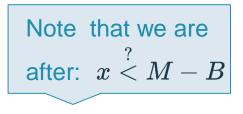
 $\mathsf{LT}(a,r) + \mathsf{LT}(b,B) = \mathsf{LT}(c,B) + \mathsf{LT}(b,r)$ 



• Exploit the commutativity of addition:

- Combine with Observation 1 (performing modular sums over the integers):
- $$\begin{split} b &= [a+B] = a + B M \cdot \mathsf{LT}(b,B) \\ &= x + r M \cdot \mathsf{LT}(a,r) + B M \cdot \mathsf{LT}(b,B) \end{split} \\ b &= [c+r] = c + r M \cdot \mathsf{LT}(b,r) \\ &= x + B M \cdot \mathsf{LT}(c,B) + r M \cdot \mathsf{LT}(b,r) \end{split}$$

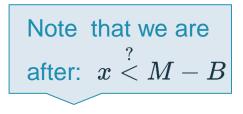
$$LT(a,r) + LT(b,B) = LT(c,B) + LT(b,r)$$



• Exploit the commutativity of addition:

- Combine with Observation 1 (performing modular sums over the integers):
- $$\begin{split} b &= [a+B] = a + B M \cdot \mathsf{LT}(b,B) \\ &= x + r M \cdot \mathsf{LT}(a,r) + B M \cdot \mathsf{LT}(b,B) \end{split} \\ b &= [c+r] = c + r M \cdot \mathsf{LT}(b,r) \\ &= x + B M \cdot \mathsf{LT}(c,B) + r M \cdot \mathsf{LT}(b,r) \end{split}$$

$$\mathsf{LT}(a,r) + \overline{\mathsf{LT}(b,B)} = \underbrace{\mathsf{LT}(c,B)}_{+} \mathsf{LT}(b,r)$$



• Exploit the commutativity of addition:

Combine with Observation 1 (performing modular sums over the integers):

$$\begin{split} b &= [a+B] = a + B - M \cdot \mathsf{LT}(b,B) \\ &= x + r - M \cdot \mathsf{LT}(a,r) + B - M \cdot \mathsf{LT}(b,B) \end{split} \\ b &= [c+r] = c + r - M \cdot \mathsf{LT}(b,r) \\ &= x + B - M \cdot \mathsf{LT}(c,B) + r - M \cdot \mathsf{LT}(b,r) \end{split}$$

$$\mathsf{LT}(a,r) + \mathsf{LT}(b,B) = \mathsf{LT}(c,B) + \mathsf{LT}(b,r)$$

## Rabbit's conclusions

- Rabbit comparisons are *more efficient* than edaBit<sup>1</sup> comparisons with:
  - ~1.5x better throughput in most adversarial settings
  - Over 2.3x better throughput in the passive, honest majority setting
  - Lower communication cost
  - Lower memory footprint for the HE-based preprocessing

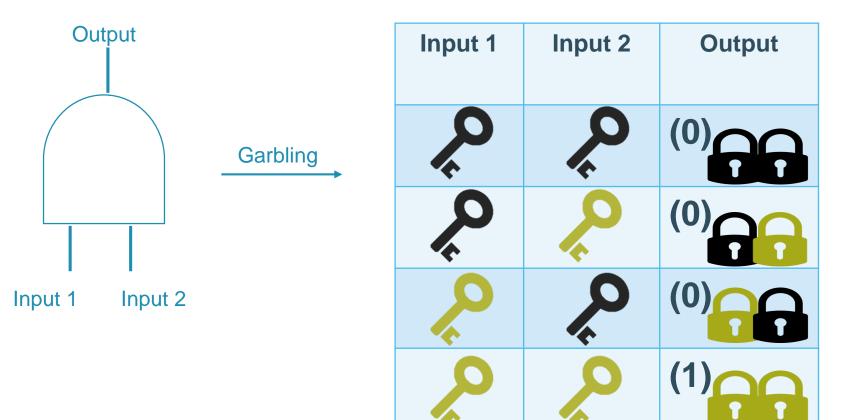
• Rabbit eliminates the need for "slack"

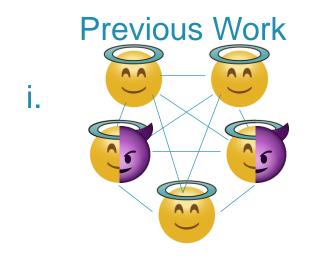
• The core of the Rabbit comparison algorithms is unconditionally secure

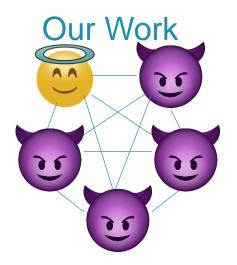
1 Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved primitives for MPC over mixed arithmetic-binary circuits. In Annual International Cryptology Conference, pp. 823-852. Springer, Cham, 2020.

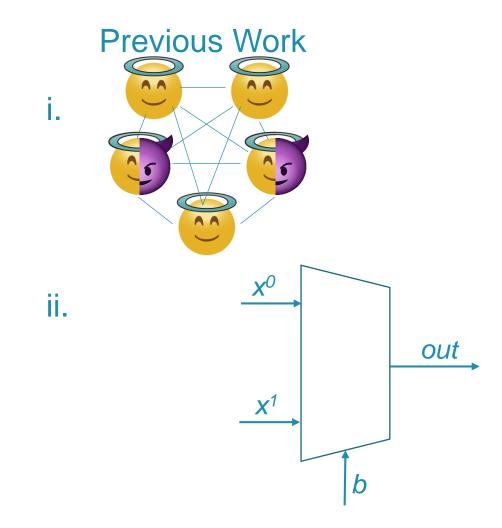
Improving MPC Primitives: The Case of Multiparty Arithmetic Garbling

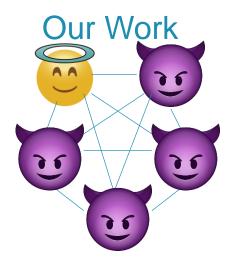
## Full-Threshold Actively-Secure Multiparty Arithmetic Circuit Garbling

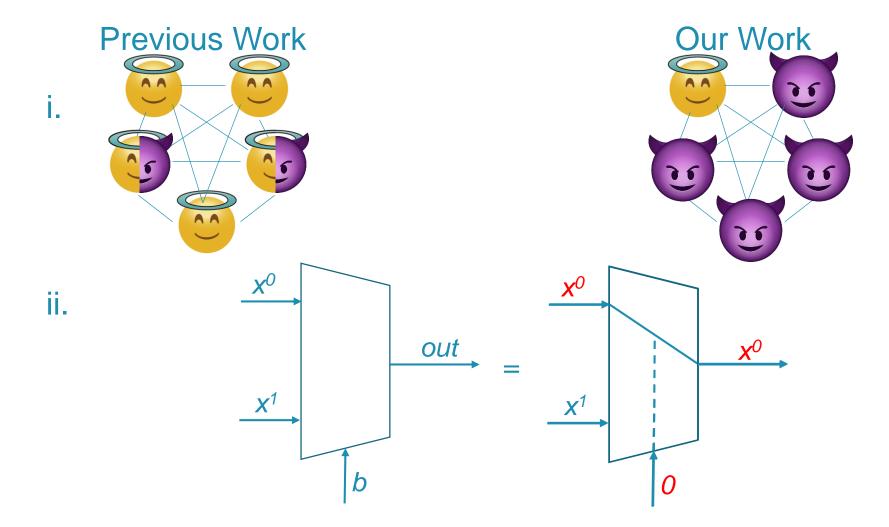


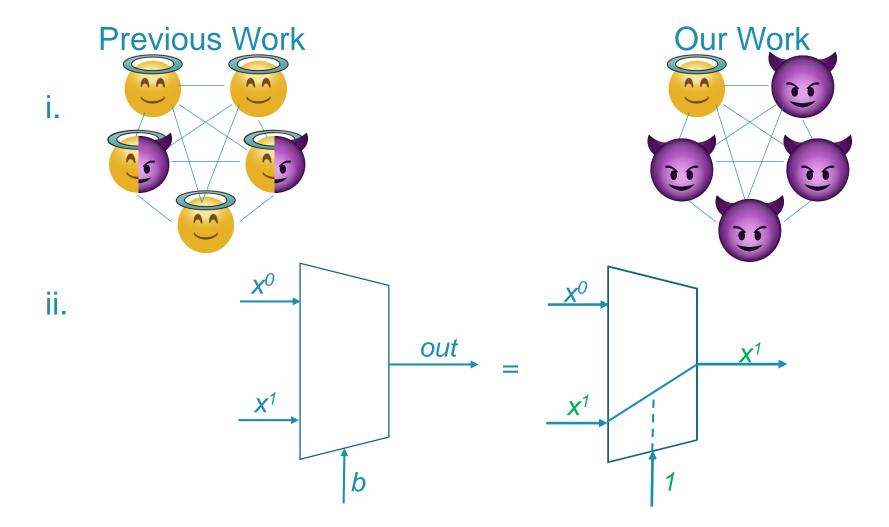


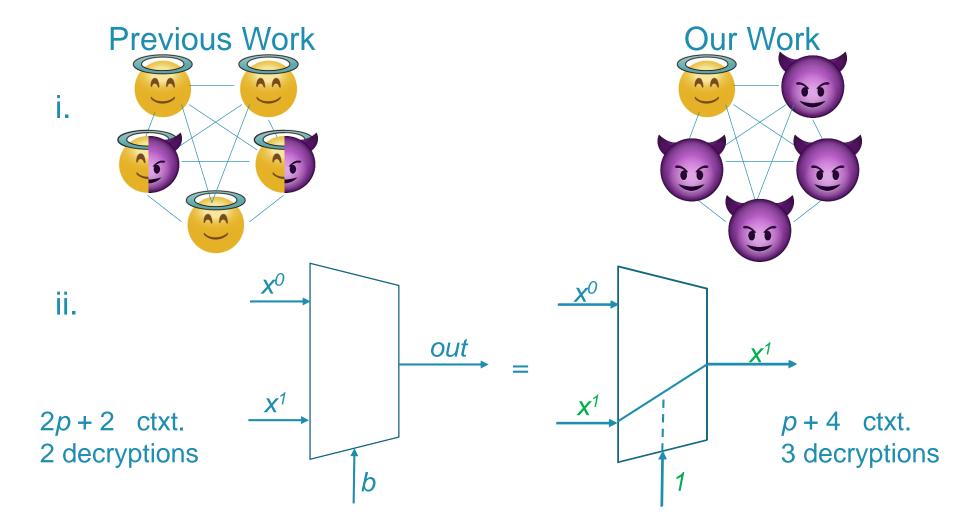












### **Closing Remarks**

## Conclusions

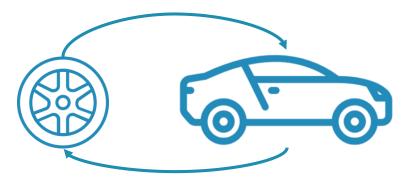
#### MPC is practical



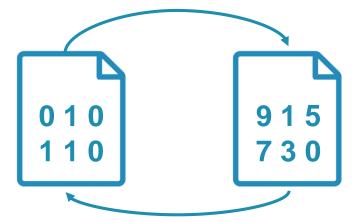
Exploit interdisciplinary research



Primitives and Application Scenarios

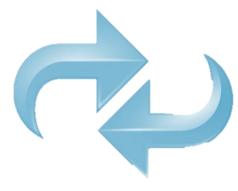


Use each data representation for what is best



## Future Work

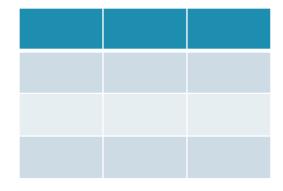
#### Switching Protocols

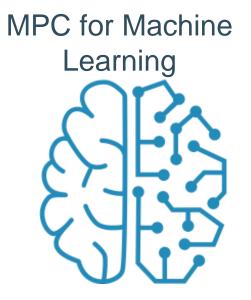


Generalized Beaver Tuples



#### **Special Preprocessing**





# Future Research



